Biomedical Applications of Vibrational Spectroscopy - Hyperspectral Imaging - Chemometrics
 
 


Selected scientific studies for which CytoSpec has been used (May 2022)



 
 

  1. Yin, J., G. Huang, C. An, and R. Feng,
    Nanocellulose enhances the dispersion and toxicity of ZnO NPs to green algae Eremosphaera viridis.
    Environmental Science: Nano, 2022. 9(1): p. 393-405.
    http://dx.doi.org/10.1039/D1EN00881A.
     
  2. Sommer, F., B. Sun, J. Fischer, M. Goldammer, et al.,
    Hyperspectral Imaging during Normothermic Machine Perfusion-A Functional Classification of Ex Vivo Kidneys Based on Convolutional Neural Networks.
    Biomedicines, 2022. 10(2).
    https://www.ncbi.nlm.nih.gov/pubmed/35203605.
     
  3. Shaw, Z.L., S. Cheeseman, L.Z.Y. Huang, R. Penman, et al.,
    Illuminating the biochemical interaction of antimicrobial few-layer black phosphorus with microbial cells using synchrotron macro-ATR-FTIR.
    J Mater Chem B, 2022.
    https://www.ncbi.nlm.nih.gov/pubmed/35024716.
     
  4. Muller, K., Z. Szikszai, A. Csepregi, R. Huszank, et al.,
    Proton beam irradiation induces invisible modifications under the surface of painted parchment.
    Sci Rep, 2022. 12(1): p. 113.
    https://www.ncbi.nlm.nih.gov/pubmed/34996914.
     
  5. Molee, W., W. Khosinklang, P. Tongduang, K. Thumanu, et al.,
    Biomolecules, Fatty Acids, Meat Quality, and Growth Performance of Slow-Growing Chickens in an Organic Raising System.
    Animals (Basel), 2022. 12(5).
    https://www.ncbi.nlm.nih.gov/pubmed/35268139.
     
  6. Liu, X., L. Shi, L. Shi, M. Wei, et al.,
    Towards Mapping Mouse Metabolic Tissue Atlas by Mid-Infrared Imaging with Heavy Water Labeling.
    Adv Sci (Weinh), 2022: p. e2105437.
    https://www.ncbi.nlm.nih.gov/pubmed/35319171.
     
  7. Krysa, M., A. Makuch-Kocka, K. Susniak, T. Plech, et al.,
    Spectroscopic Evaluation of the Potential Neurotoxic Effects of a New Candidate for Anti-Seizure Medication—TP-315 during Chronic Administration (In Vivo).
    International Journal of Molecular Sciences, 2022. 23(9): p. 4607.
    https://dx.doi.org/doi:10.3390/ijms23094607.
     
  8. Kolodziej, M., E. Kaznowska, S. Paszek, J. Cebulski, et al.,
    Characterisation of breast cancer molecular signature and treatment assessment with vibrational spectroscopy and chemometric approach.
    PLoS One, 2022. 17(3): p. e0264347.
    https://www.ncbi.nlm.nih.gov/pubmed/35263369.
     
  9. Keung, C., P. Heraud, N. Kuk, R. Lim, et al.,
    Fourier-Transform Infra-Red Microspectroscopy Can Accurately Diagnose Colitis and Assess Severity of Inflammation.
    Int J Mol Sci, 2022. 23(5).
    https://www.ncbi.nlm.nih.gov/pubmed/35269993.
     
  10. Kamran, M.A., A. Alshahrani, A.A. Alnazeh, S.E. Udeabor, et al.,
    Ultrastructural and physicochemical characterization of pH receptive chlorhexidine-loaded poly-L-glycolic acid-modified orthodontic adhesive.
    Microsc Res Tech, 2022. 85(3): p. 996-1004.
    https://www.ncbi.nlm.nih.gov/pubmed/34716725.
     
  11. Hossain, M.T., S. Liyanage, and N. Abidi,
    FTIR microspectroscopic approach to investigate macromolecular distribution in seed coat cross-sections.
    Vibrational Spectroscopy, 2022. 120: p. 103376.
    https://dx.doi.org/10.1016/j.vibspec.2022.103376.
     
  12. Furber, K.L., R.J.S. Lacombe, S. Caine, M.P. Thangaraj, et al.,
    Biochemical Alterations in White Matter Tracts of the Aging Mouse Brain Revealed by FTIR Spectroscopy Imaging.
    Neurochem Res, 2022. 47(3): p. 795-810.
    https://www.ncbi.nlm.nih.gov/pubmed/34820737.
     
  13. Chae, B., E. Seo, H.J. Kim, J. Kim, et al.,
    Spectrochemical analysis of slippery loach skin and kelp using FTIR imaging.
    Vibrational Spectroscopy, 2022. 118: p. 103338.
    https://dx.doi.org/10.1016/j.vibspec.2022.103338.
     
  14. Boseley, R.E., J. Vongsvivut, D. Appadoo, M.J. Hackett, et al.,
    Monitoring the chemical changes in fingermark residue over time using synchrotron infrared spectroscopy.
    Analyst, 2022. 147(5): p. 799-810.
    https://www.ncbi.nlm.nih.gov/pubmed/35174821.
     
  15. Yin, J., G. Huang, C. An, P. Zhang, et al.,
    Exploration of nanocellulose washing agent for the green remediation of phenanthrene-contaminated soil.
    J Hazard Mater, 2021. 403: p. 123861.
    https://www.ncbi.nlm.nih.gov/pubmed/33264936.
     
  16. Willenbacher, E., A. Brunner, B. Zelger, S.H. Unterberger, et al.,
    Application of mid-infrared microscopic imaging for the diagnosis and classification of human lymphomas.
    J Biophotonics, 2021. 14(9): p. e202100079.
    https://www.ncbi.nlm.nih.gov/pubmed/34159739.
     
  17. Traynor, D., I. Behl, D. O'Dea, F. Bonnier, et al.,
    Raman spectral cytopathology for cancer diagnostic applications.
    Nat Protoc, 2021. 16(7): p. 3716-3735.
    https://www.ncbi.nlm.nih.gov/pubmed/34117476.
     
  18. Sangpueak, R., P. Phansak, K. Thumanu, S. Siriwong, et al.,
    Effect of Salicylic AcidFormulations on Induced Plant Defense against Cassava Anthracnose Disease.
    Plant Pathol J, 2021. 37(4): p. 356-364.
    https://www.ncbi.nlm.nih.gov/pubmed/34365747.
     
  19. Quintas, G., B.R. Wood, H.J. Byrne, and D. Perez-Guaita,
    Multiplexed Fourier Transform Infrared and Raman Imaging.
    Methods Mol Biol, 2021. 2350: p. 299-312.
    https://www.ncbi.nlm.nih.gov/pubmed/34331293.
     
  20. Phansak, P., S. Siriwong, R. Sangpueak, N. Kanawapee, et al.,
    Screening rice blast-resistant cultivars via synchrotron fourier transform infrared (SR-FTIR) microspectroscopy.
    Emirates Journal of Food and Agriculture, 2021. 33(9): p. 726-741.
    https://dx.doi.org/10.9755/ejfa.2021.v33.i9.2758.
     
  21. Petrov, G.I., R. Arora, and V.V. Yakovlev,
    Coherent anti-Stokes Raman scattering imaging of microcalcifications associated with breast cancer.
    Analyst, 2021. 146(4): p. 1253-1259.
    https://www.ncbi.nlm.nih.gov/pubmed/33332488.
     
  22. Mosca, S., C. Conti, N. Stone, and P. Matousek,
    Spatially offset Raman spectroscopy.
    Nature Reviews Methods Primers, 2021. 1(1): p. 21.
    https://dx.doi.org/10.1038/s43586-021-00019-0.
     
  23. Matuszyk, E. and M. Baranska,
    Primary murine hepatocytes exposed to fatty acids analyzed by Raman and infrared microscopy.
    Clinical Spectroscopy, 2021. 3: p. 100007.
    https://dx.doi.org/10.1016/j.clispe.2021.100007.
     
  24. Liedtke, I., S. Diehn, Z. Heiner, S. Seifert, et al.,
    Multivariate Raman mapping for phenotypic characterization in plant tissue sections.
    Spectrochim Acta A Mol Biomol Spectrosc, 2021. 251: p. 119418.
    https://www.ncbi.nlm.nih.gov/pubmed/33461131.
     
  25. Kujdowicz, M., B. Mech, K. Chrabaszcz, P. Chlosta, et al.,
    FTIR Spectroscopic Imaging Supports Urine Cytology for Classification of Low- and High-Grade Bladder Carcinoma.
    Cancers (Basel), 2021. 13(22).
    https://www.ncbi.nlm.nih.gov/pubmed/34830887.
     
  26. Kalisz, G., B. Gieroba, O. Chrobak, M. Suchora, et al.,
    Vibrational Spectroscopic Analyses and Imaging of the Early Middle Ages Hemp Bast Fibres Recovered from Lake Sediments.
    Molecules, 2021. 26(5).
    https://www.ncbi.nlm.nih.gov/pubmed/33804535.
     
  27. Hartnell, D., A. Hollings, A.M. Ranieri, H.B. Lamichhane, et al.,
    Mapping sub-cellular protein aggregates and lipid inclusions using synchrotron ATR-FTIR microspectroscopy.
    Analyst, 2021.
    https://www.ncbi.nlm.nih.gov/pubmed/33881057.
     
  28. Gieroba, B., A. Przekora, G. Kalisz, P. Kazimierczak, et al.,
    Collagen maturity and mineralization in mesenchymal stem cells cultured on the hydroxyapatite-based bone scaffold analyzed by ATR-FTIR spectroscopic imaging.
    Mater Sci Eng C Mater Biol Appl, 2021. 119: p. 111634.
    https://www.ncbi.nlm.nih.gov/pubmed/33321672.
     
  29. Das Gupta, S., M. Killenberger, T. Tanner, L. Rieppo, et al.,
    Mineralization of dental tissues and caries lesions detailed with Raman microspectroscopic imaging.
    Analyst, 2021. 146(5): p. 1705-1713.
    https://www.ncbi.nlm.nih.gov/pubmed/33295890.
     
  30. Chen, Z., C. An, J. Yin, E. Owens, et al.,
    Exploring the use of cellulose nanocrystal as surface-washing agent for oiled shoreline cleanup.
    J Hazard Mater, 2021. 402: p. 123464.
    https://www.ncbi.nlm.nih.gov/pubmed/32693337.
     
  31. Cheeseman, S., Z.L. Shaw, J. Vongsvivut, R.J. Crawford, et al.,
    Analysis of Pathogenic Bacterial and Yeast Biofilms Using the Combination of Synchrotron ATR-FTIR Microspectroscopy and Chemometric Approaches.
    Molecules, 2021. 26(13).
    https://www.ncbi.nlm.nih.gov/pubmed/34202224.
     
  32. Woss, C., S.H. Unterberger, G. Degenhart, A. Akolkar, et al.,
    Comparison of structure and composition of a fossil Champsosaurus vertebra with modern Crocodylidae vertebrae: A multi-instrumental approach.
    J Mech Behav Biomed Mater, 2020. 104: p. 103668.
    https://www.ncbi.nlm.nih.gov/pubmed/32174426.
     
  33. Sunthornvarabhas, J., P. Rungthaworn, U. Sukatta, N. Juntratip, et al.,
    Antimicrobial Tendency of Bagasse Lignin Extracts by Raman Peak Intensity.
    Sugar Tech, 2020. 22(4): p. 697-705.
    https://dx.doi.org/10.1007/s12355-019-00778-x.
     
  34. S., L., H. D., M. S., C. S., et al.,
    Characterization Of Wear And Corrosion Product Using Multivariate Fourier-Transform Infrared Microspectroscopy Imaging Analysis.
    Orthopaedic Proceedings, 2020. 102-B(SUPP_1): p. 103-103.
    https://dx.doi.org/10.1302/1358-992X.2020.1.103.
     
  35. Puttaso, P., W. Namanusart, K. Thumanu, B. Kamolmanit, et al.,
    Assessing the Effect of Rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) Leaf Chemical Composition on Some Soil Properties of Differently Aged Rubber Tree Plantations.
    Agronomy, 2020. 10(12): p. 1871.
    https://dx.doi.org/10.3390/agronomy10121871.
     
  36. Ong, L., A.P. Pax, A. Ong, J. Vongsvivut, et al.,
    The effect of pH on the fat and protein within cream cheese and their influence on textural and rheological properties.
    Food Chem, 2020. 332: p. 127327.
    https://www.ncbi.nlm.nih.gov/pubmed/32615380.
     
  37. McGann, J., M. Willans, G. Sauzier, M.J. Hackett, et al.,
    Investigating diversity in polymer-based identity cards using ATR-FTIR spectroscopy and chemometrics.
    Forensic Science International: Reports, 2020. 2: p. 100149.
    https://dx.doi.org/10.1016/j.fsir.2020.100149.
     
  38. Mazarakis, N., J. Vongsvivut, K.R. Bambery, K. Ververis, et al.,
    Investigation of molecular mechanisms of experimental compounds in murine models of chronic allergic airways disease using synchrotron Fourier-transform infrared microspectroscopy.
    Sci Rep, 2020. 10(1): p. 11713.
    https://www.ncbi.nlm.nih.gov/pubmed/32678217.
     
  39. Liu, Y.J., M. Kyne, C. Wang, and X.Y. Yu,
    Data mining in Raman imaging in a cellular biological system.
    Comput Struct Biotechnol J, 2020. 18: p. 2920-2930.
    https://www.ncbi.nlm.nih.gov/pubmed/33163152.
     
  40. Liu, Y., G. Huang, C. An, X. Chen, et al.,
    Use of Nano-TiO2 self-assembled flax fiber as a new initiative for immiscible oil/water separation.
    Journal of Cleaner Production, 2020. 249: p. 119352.
    https://dx.doi.org/10.1016/j.jclepro.2019.119352.
     
  41. Liu, S., D.J. Hall, S.M. McCarthy, J.J. Jacobs, et al.,
    Fourier transform infrared spectroscopic imaging of wear and corrosion products within joint capsule tissue from total hip replacements patients.
    J Biomed Mater Res B Appl Biomater, 2020. 108(2): p. 513-526.
    https://www.ncbi.nlm.nih.gov/pubmed/31099981.
     
  42. Gieroba, B., M. Krysa, K. Wojtowicz, A. Wiater, et al.,
    The FT-IR and Raman Spectroscopies as Tools for Biofilm Characterization Created by Cariogenic Streptococci.
    Int J Mol Sci, 2020. 21(11).
    https://www.ncbi.nlm.nih.gov/pubmed/32471277.
     
  43. Drozdz, A., K. Matusiak, Z. Setkowicz, M. Ciarach, et al.,
    FTIR microspectroscopy revealed biochemical changes in liver and kidneys as a result of exposure to low dose of iron oxide nanoparticles.
    Spectrochim Acta A Mol Biomol Spectrosc, 2020. 236: p. 118355.
    https://www.ncbi.nlm.nih.gov/pubmed/32344375.
     
  44. Das Gupta, S., M.A.J. Finnila, S.S. Karhula, S. Kauppinen, et al.,
    Raman microspectroscopic analysis of the tissue-specific composition of the human osteochondral junction in osteoarthritis: A pilot study.
    Acta Biomater, 2020. 106: p. 145-155.
    https://www.ncbi.nlm.nih.gov/pubmed/32081781.
     
  45. Chatchawal, P., M. Wongwattanakul, P. Tippayawat, N. Jearanaikoon, et al.,
    Monitoring the Progression of Liver Fluke-Induced Cholangiocarcinoma in a Hamster Model Using Synchrotron FTIR Microspectroscopy and Focal Plane Array Infrared Imaging.
    Anal Chem, 2020.
    https://www.ncbi.nlm.nih.gov/pubmed/33170647.
     
  46. Bik, E., M. Ishigaki, A. Blat, A. Jasztal, et al.,
    Lipid Droplet Composition Varies Based on Medaka Fish Eggs Development as Revealed by NIR-, MIR-, and Raman Imaging.
    Molecules, 2020. 25(4).
    https://www.ncbi.nlm.nih.gov/pubmed/32070018.
     
  47. Adobes-Vidal, M., M. Frey, and T. Keplinger,
    Atomic force microscopy imaging of delignified secondary cell walls in liquid conditions facilitates interpretation of wood ultrastructure.
    J Struct Biol, 2020. 211(2): p. 107532.
    https://www.ncbi.nlm.nih.gov/pubmed/32442716.
     
  48. Zhou, X.J., H.C. Zhu, J.J. Zhong, W.W. Peng, et al.,
    New status of the infrared beamlines at SSRF.
    Nuclear Science and Techniques, 2019. 30(12): p. 182.
    https://dx.doi.org/10.1007/s41365-019-0696-x.
     
  49. Vongsvivut, J., D. Perez-Guaita, B.R. Wood, P. Heraud, et al.,
    Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells.
    Analyst, 2019. 144(10): p. 3226-3238.
    https://www.ncbi.nlm.nih.gov/pubmed/30869675.
     
  50. Vidiella del Blanco, M., V. Gomez, P. Fleckenstein, T. Keplinger, et al.,
    Grafting of amphiphilic block copolymers on lignocellulosic materials via SI-AGET-ATRP.
    Journal of Polymer Science Part A: Polymer Chemistry, 2019. 57(8): p. 885-897.
    https://dx.doi.org/10.1002/pola.29340.
     
  51. Segmehl, J.S., T. Keplinger, A. Krasnobaev, J.K. Berg, et al.,
    Facilitated delignification in CAD deficient transgenic poplar studied by confocal Raman spectroscopy imaging.
    Spectrochim Acta A Mol Biomol Spectrosc, 2019. 206: p. 177-184.
    https://www.ncbi.nlm.nih.gov/pubmed/30099316.
     
  52. Pax, A.P., L. Ong, J. Vongsvivut, M.J. Tobin, et al.,
    The characterisation of Mozzarella cheese microstructure using high resolution synchrotron transmission and ATR-FTIR microspectroscopy.
    Food Chem, 2019. 291: p. 214-222.
    https://www.ncbi.nlm.nih.gov/pubmed/31006461.
     
  53. Milewska, A., V. Zivanovic, V. Merk, U.B. Arnalds, et al.,
    Gold nanoisland substrates for SERS characterization of cultured cells.
    Biomed Opt Express, 2019. 10(12): p. 6172-6188.
    https://www.ncbi.nlm.nih.gov/pubmed/31853393.
     
  54. Kolodziej, M., D. Jesionek-Kupnicka, M. Braun, V. Atamaniuk, et al.,
    Classification of aggressive and classic mantle cell lymphomas using synchrotron Fourier Transform Infrared microspectroscopy.
    Sci Rep, 2019. 9(1): p. 12857.
    https://www.ncbi.nlm.nih.gov/pubmed/31492883.
     
  55. Kansal, V., J. Lukenchuk, M.M. U Dodd, M. Hackett, et al.,
    Analysis of the Change Induced by Riboflavin and Ultraviolet Light on Corneal Collagen by Infrared Spectrometry.
    International Journal of Keratoconus and Ectatic Corneal Diseases, 2019. 8(17-22).
    https://dx.doi.org/10.5005/jp-journals-10025-1174.
     
  56. Augustyniak, K., K. Chrabaszcz, A. Jasztal, M. Smeda, et al.,
    High and ultra-high definition of infrared spectral histopathology gives an insight into chemical environment of lung metastases in breast cancer.
    J Biophotonics, 2019. 12(4): p. e201800345.
    https://www.ncbi.nlm.nih.gov/pubmed/30548409.
     
  57. Zeise, I., Z. Heiner, S. Holz, M. Joester, et al.,
    Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus.
    Plants (Basel), 2018. 7(1).
    https://www.ncbi.nlm.nih.gov/pubmed/29370089.
     
  58. Yarbakht, M., M. Nikkhah, A. Moshaii, K. Weber, et al.,
    Simultaneous isolation and detection of single breast cancer cells using surface-enhanced Raman spectroscopy.
    Talanta, 2018. 186: p. 44-52.
    https://www.ncbi.nlm.nih.gov/pubmed/29784385.
     
  59. Vitas, S., T. Keplinger, N. Reichholf, R. Figi, et al.,
    Functional lignocellulosic material for the remediation of copper(II) ions from water: Towards the design of a wood filter.
    J Hazard Mater, 2018. 355: p. 119-127.
    https://www.ncbi.nlm.nih.gov/pubmed/29778028.
     
  60. Truong, V.K., J. Vongsvivut, N.M. Geeganagamage, M.J. Tobin, et al.,
    Study of melanin localization in the mature male Calopteryx haemorrhoidalis damselfly wings.
    J Synchrotron Radiat, 2018. 25(Pt 3): p. 874-877.
    https://www.ncbi.nlm.nih.gov/pubmed/29714199.
     
  61. Stuhr, S., V.K. Truong, J. Vongsvivut, T. Senkbeil, et al.,
    Structure and Chemical Organization in Damselfly Calopteryx haemorrhoidalis Wings: A Spatially Resolved FTIR and XRF Analysis with Synchrotron Radiation.
    Sci Rep, 2018. 8(1): p. 8413.
    https://www.ncbi.nlm.nih.gov/pubmed/29849036.
     
  62. Prats-Mateu, B., M. Felhofer, A. de Juan, and N. Gierlinger,
    Multivariate unmixing approaches on Raman images of plant cell walls: new insights or overinterpretation of results?
    Plant Methods, 2018. 14: p. 52.
    https://www.ncbi.nlm.nih.gov/pubmed/29997681.
     
  63. Ozparpucu, M., N. Gierlinger, I. Burgert, R. Van Acker, et al.,
    The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars.
    Planta, 2018. 247(4): p. 887-897.
    https://www.ncbi.nlm.nih.gov/pubmed/29270675.
     
  64. Lima, C., L. Correa, H. Byrne, and d. Zezell,
    K-means and Hierarchical Cluster Analysis as segmentation algorithms of FTIR hyperspectral images collected from cutaneous tissue.
    2018 SBFoton International Optics and Photonics Conference (SBFoton IOPC), 2018: p. 1-4.
    https://dx.doi.org/10.1109/SBFoton-IOPC.2018.8610920.
     
  65. Lasch, P., M. Stammler, M. Zhang, M. Baranska, et al.,
    FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria.
    Anal Chem, 2018. 90(15): p. 8896-8904.
    https://www.ncbi.nlm.nih.gov/pubmed/29944341.
     
  66. Heiner, Z., I. Zeise, R. Elbaum, and J. Kneipp,
    Insight into plant cell wall chemistry and structure by combination of multiphoton microscopy with Raman imaging.
    J Biophotonics, 2018. 11(4): p. e201700164.
    https://www.ncbi.nlm.nih.gov/pubmed/29024576.
     
  67. Dorakumbura, B.N., R.E. Boseley, T. Becker, D.E. Martin, et al.,
    Revealing the spatial distribution of chemical species within latent fingermarks using vibrational spectroscopy.
    Analyst, 2018. 143(17): p. 4027-4039.
    https://www.ncbi.nlm.nih.gov/pubmed/29956693.
     
  68. Zhang, Y., G. Huang, C. An, X. Xin, et al.,
    Transport of anionic azo dyes from aqueous solution to gemini surfactant-modified wheat bran: Synchrotron infrared, molecular interaction and adsorption studies.
    Sci Total Environ, 2017. 595: p. 723-732.
    https://www.ncbi.nlm.nih.gov/pubmed/28407589.
     
  69. Ye, D., P. Heraud, R. Parnpai, and T. Li,
    Reversal of Experimental Liver Damage after Transplantation of Stem-Derived Cells Detected by FTIR Spectroscopy.
    Stem Cells Int, 2017. 2017: p. 4585169.
    https://www.ncbi.nlm.nih.gov/pubmed/29445403.
     
  70. Woess, C., S.H. Unterberger, C. Roider, M. Ritsch-Marte, et al.,
    Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.
    PLoS One, 2017. 12(3): p. e0174552.
    http://www.ncbi.nlm.nih.gov/pubmed/28334006.
     
  71. Williamson, M.R., K. Dietrich, M.J. Hackett, S. Caine, et al.,
    Rehabilitation Augments Hematoma Clearance and Attenuates Oxidative Injury and Ion Dyshomeostasis After Brain Hemorrhage.
    Stroke, 2017. 48(1): p. 195-203.
    https://www.ncbi.nlm.nih.gov/pubmed/27899761.
     
  72. Thumanu, K., D. Wongchalee, M. Sompong, P. Phansak, et al.,
    Synchrotron-based FTIR microspectroscopy of chili resistance induced by Bacillus subtilis strain D604 against anthracnose disease.
    Journal of Plant Interactions, 2017. 12(1): p. 255-263.
    https://dx.doi.org/10.1080/17429145.2017.1325523.
     
  73. Sunthornvarabhas, J., S. Liengprayoon, and T. Suwonsichon,
    Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product.
    Industrial Crops and Products, 2017. 109: p. 857-861.
    https://dx.doi.org/10.1016/j.indcrop.2017.09.059.
     
  74. Smith, G.P.S., S.E. Holroyd, D.C.W. Reid, and K.C. Gordon,
    Raman imaging processed cheese and its components.
    Journal of Raman Spectroscopy, 2017. 48(3): p. 374-383.
    https://dx.doi.org/10.1002/jrs.5054.
     
  75. Pallua, J.D., S. Unterberger, N. Pemberger, C. Woess, et al.,
    Retrospective case study on the suitability of mid-infrared microscopic imaging for the diagnosis of mucormycosis in human tissue sections.
    Analytical Methods, 2017. 9(28): p. 4135-4142.
    https://dx.doi.org/10.1039/C7AY01132F .
     
  76. Lasch, P. and I. Noda,
    Two-Dimensional Correlation Spectroscopy for Multimodal Analysis of FT-IR, Raman, and MALDI-TOF MS Hyperspectral Images with Hamster Brain Tissue.
    Anal Chem, 2017. 89(9): p. 5008-5016.
    https://www.ncbi.nlm.nih.gov/pubmed/28365985.
     
  77. Heiner, Z., M. Guhlke, V. Zivanovic, F. Madzharova, et al.,
    Surface-enhanced hyper Raman hyperspectral imaging and probing in animal cells.
    Nanoscale, 2017. 9(23): p. 8024-8032.
    https://www.ncbi.nlm.nih.gov/pubmed/28574069.
     
  78. Capobianco, G., M.P. Bracciale, D. Sali, F. Sbardella, et al.,
    Chemometrics approach to FT-IR hyperspectral imaging analysis of degradation products in artwork cross-section.
    Microchemical Journal, 2017. 132: p. 69-76.
    https://dx.doi.org/10.1016/j.microc.2017.01.007.
     
  79. Amenabar, I., S. Poly, M. Goikoetxea, W. Nuansing, et al.,
    Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy.
    Nat Commun, 2017. 8: p. 14402.
    https://www.ncbi.nlm.nih.gov/pubmed/28198384.
     
  80. Alaverdashvili, M., M.J. Hackett, S. Caine, and P.G. Paterson,
    Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.
    Neuroimage, 2017. 149: p. 275-284.
    https://www.ncbi.nlm.nih.gov/pubmed/28179168.
     
  81. Zawlik, I., E. Kaznowska, J. Cebulski, M. Kolodziej, et al.,
    FPA-FTIR Microspectroscopy for Monitoring Chemotherapy Efficacy in Triple-Negative Breast Cancer.
    Sci Rep, 2016. 6: p. 37333.
    http://www.ncbi.nlm.nih.gov/pubmed/27857183.
     
  82. Wrobel, T.P., J.T. Kwak, A. Kadjacsy-Balla, and R. Bhargava,
    High-definition Fourier transform infrared spectroscopic imaging of prostate tissue.
    SPIE Medical Imaging, 2016. 9791.
    https://dx.doi.org/10.1117/12.2217341.
     
  83. Tolstik, E., L.A. Osminkina, C. Matthaus, M. Burkhardt, et al.,
    Studies of silicon nanoparticles uptake and biodegradation in cancer cells by Raman spectroscopy.
    Nanomedicine, 2016. 12(7): p. 1931-1940.
    https://www.ncbi.nlm.nih.gov/pubmed/27085902.
     
  84. Sunthornvarabhas, J., S. Liengprayoon, C. Aouf, W. Rungjang, et al.,
    Tara tannin as active ingredient in electrospun fibrous delivery system.
    Journal of Applied Polymer Science, 2016. 133(27).
    https://dx.doi.org/10.1002/app.43646.
     
  85. Owocki, K., B. Kremer, B. Wrzosek, A. Krolikowska, et al.,
    Fungal Ferromanganese Mineralisation in Cretaceous Dinosaur Bones from the Gobi Desert, Mongolia.
    PLoS One, 2016. 11(2): p. e0146293.
    https://www.ncbi.nlm.nih.gov/pubmed/26863014.
     
  86. Oinas, J., L. Rieppo, M.A. Finnila, M. Valkealahti, et al.,
    Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis.
    Sci Rep, 2016. 6: p. 30008.
    https://www.ncbi.nlm.nih.gov/pubmed/27445254.
     
  87. Merk, V., M. Chanana, S. Gaan, and I. Burgert,
    Mineralization of wood by calcium carbonate insertion for improved flame retardancy.
    Holzforschung, 2016. 70(9): p. 867-876.
    https://dx.doi.org/10.1515/hf-2015-0228.
     
  88. Kochan, K., K. Chrabaszcz, B. Szczur, E. Maslak, et al.,
    IR and Raman imaging of murine brains from control and ApoE/LDLR(-/-) mice with advanced atherosclerosis.
    Analyst, 2016. 141(18): p. 5329-38.
    http://www.ncbi.nlm.nih.gov/pubmed/27332112.
     
  89. Dudala, J., M.B. Bialas, M. Szczerbowska-Boruchowska, M. Bereza-Buziak, et al.,
    Investigation of biochemical composition of adrenal gland tumors by means of FTIR.
    Pol J Pathol, 2016. 67(1): p. 60-8.
    https://www.ncbi.nlm.nih.gov/pubmed/27179276.
     
  90. Caine, S., M.J. Hackett, H. Hou, S. Kumar, et al.,
    A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke.
    Neurobiol Dis, 2016. 91: p. 132-42.
    https://www.ncbi.nlm.nih.gov/pubmed/26969531.
     
  91. Buchner, T., D. Drescher, V. Merk, H. Traub, et al.,
    Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes.
    Analyst, 2016. 141(17): p. 5096-106.
    https://www.ncbi.nlm.nih.gov/pubmed/27353290.
     
  92. Zohdi, V., D.R. Whelan, B.R. Wood, J.T. Pearson, et al.,
    Importance of Tissue Preparation Methods in FTIR Micro-Spectroscopical Analysis of Biological Tissues: 'Traps for New Users'.
    PLoS One, 2015. 10(2): p. e0116491.
    http://www.ncbi.nlm.nih.gov/pubmed/25710811.
     
  93. Wrobel, T.P., K.M. Marzec, S. Chlopicki, E. Maslak, et al.,
    Effects of Low Carbohydrate High Protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR-/- mice: FT-IR and Raman imaging.
    Sci Rep, 2015. 5: p. 14002.
    https://www.ncbi.nlm.nih.gov/pubmed/26391802.
     
  94. Woess, C., M. Drach, A. Villunger, R. Tappert, et al.,
    Application of mid-infrared (MIR) microscopy imaging for discrimination between follicular hyperplasia and follicular lymphoma in transgenic mice.
    Analyst, 2015. 140(18): p. 6363-72.
    https://www.ncbi.nlm.nih.gov/pubmed/26236782.
     
  95. Tolstik, T., C. Marquardt, C. Beleites, C. Matthaus, et al.,
    Classification and prediction of HCC tissues by Raman imaging with identification of fatty acids as potential lipid biomarkers.
    J Cancer Res Clin Oncol, 2015. 141(3): p. 407-18.
    https://www.ncbi.nlm.nih.gov/pubmed/25238702.
     
  96. Thumanu, K., M. Sompong, P. Phansak, K. Nontapot, et al.,
    Use of infrared microspectroscopy to determine leaf biochemical composition of cassava in response to Bacillus subtilis CaSUT007.
    Journal of Plant Interactions, 2015. 10(1): p. 270-279.
    https://dx.doi.org/10.1080/17429145.2015.1059957.
     
  97. Sroka-Bartnicka, A., J.A. Kimber, L. Borkowski, M. Pawlowska, et al.,
    The biocompatibility of carbon hydroxyapatite/beta-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.
    Anal Bioanal Chem, 2015. 407(25): p. 7775-85.
    https://www.ncbi.nlm.nih.gov/pubmed/26277184.
     
  98. Sreedhar, H., V.K. Varma, P.L. Nguyen, B. Davidson, et al.,
    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology.
    J Vis Exp, 2015(95): p. 52332.
    https://www.ncbi.nlm.nih.gov/pubmed/25650759.
     
  99. Rygula, A., M.Z. Pacia, L. Mateuszuk, A. Kaczor, et al.,
    Identification of a biochemical marker for endothelial dysfunction using Raman spectroscopy.
    Analyst, 2015. 140(7): p. 2185-9.
    https://www.ncbi.nlm.nih.gov/pubmed/25664353.
     
  100. Perez-Guaita, D., P. Heraud, K.M. Marzec, M. de la Guardia, et al.,
    Comparison of transflection and transmission FTIR imaging measurements performed on differentially fixed tissue sections.
    Analyst, 2015. 140(7): p. 2376-82.
    https://www.ncbi.nlm.nih.gov/pubmed/25695358.
     
  101. Menezes, R.C., M. Kai, K. Krause, C. Matthaus, et al.,
    Monitoring metabolites from Schizophyllum commune interacting with Hypholoma fasciculare combining LESA-HR mass spectrometry and Raman microscopy.
    Anal Bioanal Chem, 2015. 407(8): p. 2273-82.
    https://www.ncbi.nlm.nih.gov/pubmed/25542572.
     
  102. Longato, S., C. Woss, P. Hatzer-Grubwieser, C. Bauer, et al.,
    Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping.
    Anal Methods, 2015. 7(7): p. 2917-2927.
    https://www.ncbi.nlm.nih.gov/pubmed/25878731.
     
  103. Leslie, L.S., T.P. Wrobel, D. Mayerich, S. Bindra, et al.,
    High definition infrared spectroscopic imaging for lymph node histopathology.
    PLoS One, 2015. 10(6): p. e0127238.
    https://www.ncbi.nlm.nih.gov/pubmed/26039216.
     
  104. Kochan, K., E. Maslak, S. Chlopicki, and M. Baranska,
    FT-IR imaging for quantitative determination of liver fat content in non-alcoholic fatty liver.
    Analyst, 2015. 140(15): p. 4997-5002.
    https://www.ncbi.nlm.nih.gov/pubmed/26051164.
     
  105. Kochan, K., P. Heraud, M. Kiupel, V. Yuzbasiyan-Gurkan, et al.,
    Comparison of FTIR transmission and transfection substrates for canine liver cancer detection.
    Analyst, 2015. 140(7): p. 2402-11.
    https://www.ncbi.nlm.nih.gov/pubmed/25502543.
     
  106. Keplinger, T., E. Cabane, M. Chanana, P. Hass, et al.,
    A versatile strategy for grafting polymers to wood cell walls.
    Acta Biomater, 2015. 11: p. 256-63.
    https://www.ncbi.nlm.nih.gov/pubmed/25242649.
     
  107. Kalmodia, S., S. Parameswaran, W. Yang, C.J. Barrow, et al.,
    Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy: An analytical technique to understand therapeutic responses at the molecular level.
    Sci Rep, 2015. 5: p. 16649.
    https://www.ncbi.nlm.nih.gov/pubmed/26568521.
     
  108. Hackett, M.J., S.E. Smith, S. Caine, H. Nichol, et al.,
    Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat.
    Free Radic Biol Med, 2015.
    http://www.ncbi.nlm.nih.gov/pubmed/26454085.
     
  109. Hackett, M.J., S. Caine, X. Liu, T.E. May, et al.,
    Development of single-beam wide-field infrared imaging to study sub-cellular neuron biochemistry.
    Vibrational Spectroscopy, 2015. 77: p. 51-59.
    https://dx.doi.org/10.1016/j.vibspec.2014.12.004.
     
  110. de Almeida Chaves Piva, L.A., L.L.R. Silva, Leandro José Raniero, C.S.P. Lima, et al.,
    Biochemical imaging of normal, adenoma, and colorectal adenocarcinoma tissues by Fourier transform infrared spectroscopy (FTIR) and morphological correlation by histopathological analysis: preliminary results.
    Research in Biomedical Engineering, 2015. 31(1): p. 10-18.
    https://dx.doi.org/10.1590/2446-4740.0321.
     
  111. Beleites, C., O. Guntinas-Lichius, G. Ernst, J. Popp, et al.,
    FTIR microscopic imaging of carcinoma tissue section with 4× and 15× objectives: Practical considerations.
    Biomedical Spectroscopy and Imaging, 2015. 4: p. 57-66.
    https://dx.doi.org/10.3233/BSI-140101.
     
  112. Wood, B.R., K.R. Bambery, M.W. Dixon, L. Tilley, et al.,
    Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy.
    Analyst, 2014. 139(19): p. 4769-74.
    http://www.ncbi.nlm.nih.gov/pubmed/25055796.
     
  113. Tolstik, T., C. Marquardt, C. Matthaus, N. Bergner, et al.,
    Discrimination and classification of liver cancer cells and proliferation states by Raman spectroscopic imaging.
    Analyst, 2014. 139(22): p. 6036-43.
    https://www.ncbi.nlm.nih.gov/pubmed/25271553.
     
  114. Stiebing, C., C. Matthaus, C. Krafft, A.A. Keller, et al.,
    Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy.
    Anal Bioanal Chem, 2014. 406(27): p. 7037-46.
    https://www.ncbi.nlm.nih.gov/pubmed/24939132.
     
  115. Pallua, J.D., S.H. Unterberger, G. Metzler, K. Pfaller, et al.,
    Application of 3-D surface reconstruction by mid- and near-infrared microscopic imaging for anatomical studies on Hericium coralloides basidiomata.
    Anal. Methods, 2014. 6(4): p. 149-1157.
    https://dx.doi.org/10.1039/C3AY42082E .
     
  116. Marzec, K.M., T.P. Wrobel, A. Rygula, E. Maslak, et al.,
    Visualization of the biochemical markers of atherosclerotic plaque with the use of Raman, IR and AFM.
    J Biophotonics, 2014. 7(9): p. 744-56.
    https://www.ncbi.nlm.nih.gov/pubmed/24604883.
     
  117. Gierlinger, N.,
    Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA).
    Front Plant Sci, 2014. 5: p. 306.
    https://www.ncbi.nlm.nih.gov/pubmed/25071792.
     
  118. Chonanant, C., K.R. Bambery, N. Jearanaikoon, S. Chio-Srichan, et al.,
    Discrimination of micromass-induced chondrocytes from human mesenchymal stem cells by focal plane array-Fourier transform infrared microspectroscopy.
    Talanta, 2014. 130: p. 39-48.
    https://www.ncbi.nlm.nih.gov/pubmed/25159377.
     
  119. Baker, M.J., J. Trevisan, P. Bassan, R. Bhargava, et al.,
    Using Fourier transform IR spectroscopy to analyze biological materials.
    Nat Protoc, 2014. 9(8): p. 1771-91.
    https://www.ncbi.nlm.nih.gov/pubmed/24992094.
     
  120. Anwar Alebrahim, M., C. Krafft, W. Sekhaneh, B. Sigusch, et al.,
    ATR-FTIR and Raman spectroscopy of primary and permanent teeth.
    Biomedical Spectroscopy and Imaging, 2014. 3(1): p. 15-27.
    https://dx.doi.org/10.3233/BSI-130059.
     
  121. Zohdi, V., B.R. Wood, J.T. Pearson, K.R. Bambery, et al.,
    Evidence of altered biochemical composition in the hearts of adult intrauterine growth-restricted rats.
    Eur J Nutr, 2013. 52(2): p. 749-58.
    https://www.ncbi.nlm.nih.gov/pubmed/22645107.
     
  122. Zhang, N., X. Liu, L. Yu, R. Shanks, et al.,
    Phase composition and interface of starch-gelatin blends studied by synchrotron FTIR micro-spectroscopy.
    Carbohydr Polym, 2013. 95(2): p. 649-53.
    https://www.ncbi.nlm.nih.gov/pubmed/23648025.
     
  123. Wrobel, T.P., L. Mateuszuk, R.B. Kostogrys, S. Chlopicki, et al.,
    Quantification of plaque area and characterization of plaque biochemical composition with atherosclerosis progression in ApoE/LDLR(-/-) mice by FT-IR imaging.
    Analyst, 2013. 138(21): p. 6645-52.
    http://www.ncbi.nlm.nih.gov/pubmed/24040642.
     
  124. Vongsvivut, J., P. Heraud, A. Gupta, M. Puri, et al.,
    FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists.
    Analyst, 2013. 138(20): p. 6016-31.
    https://www.ncbi.nlm.nih.gov/pubmed/23957051.
     
  125. Sharma, M., J.C. Crosbie, L. Puskar, and P.A. Rogers,
    Microbeam-irradiated tumour tissue possesses a different infrared absorbance profile compared to broad beam and sham-irradiated tissue.
    Int J Radiat Biol, 2013. 89(2): p. 79-87.
    https://www.ncbi.nlm.nih.gov/pubmed/22892032.
     
  126. Posch, A.E., C. Koch, M. Helmel, M. Marchetti-Deschmann, et al.,
    Combining light microscopy, dielectric spectroscopy, MALDI intact cell mass spectrometry, FTIR spectromicroscopy and multivariate data mining for morphological and physiological bioprocess characterization of filamentous organisms.
    Fungal Genet Biol, 2013. 51: p. 1-11.
    https://www.ncbi.nlm.nih.gov/pubmed/23220594.
     
  127. Pezzei, C., A. Brunner, G.K. Bonn, and C.W. Huck,
    Fourier transform infrared imaging analysis in discrimination studies of bladder cancer.
    Analyst, 2013. 138(19): p. 5719-25.
    https://www.ncbi.nlm.nih.gov/pubmed/23897512.
     
  128. Mudronja, D., F. Vanmeert, K. Hellemans, S. Fazinic, et al.,
    Efficiency of applying ammonium oxalate for protection of monumental limestone by poultice, immersion and brushing methods.
    Applied Physics A, 2013. 111(1): p. 109-119.
    https://dx.doi.org/10.1007/s00339-012-7365-9.
     
  129. Li, Q., X. He, Y. Wang, H. Liu, et al.,
    Review of spectral imaging technology in biomedical engineering: achievements and challenges.
    J Biomed Opt, 2013. 18(10): p. 100901.
    https://www.ncbi.nlm.nih.gov/pubmed/24114019.
     
  130. Kobrina, Y., L. Rieppo, S. Saarakkala, H.J. Pulkkinen, et al.,
    Cluster analysis of infrared spectra can differentiate intact and repaired articular cartilage.
    Osteoarthritis Cartilage, 2013. 21(3): p. 462-9.
    http://www.ncbi.nlm.nih.gov/pubmed/23267848.
     
  131. Huck-Pezzei, V.A., L.K. Bittner, J.D. Pallua, H. Sonderegger, et al.,
    A chromatographic and spectroscopic analytical platform for the characterization of St John's wort extract adulterations.
    Analytical Methods, 2013. 5(3): p. 616-628.
    http://dx.doi.org/10.1039/C2AY26030A.
     
  132. Croxford, A.M., S. Whittingham, D. McNaughton, K.S. Nandakumar, et al.,
    Type II collagen-specific antibodies induce cartilage damage in mice independent of inflammation.
    Arthritis Rheum, 2013. 65(3): p. 650-9.
    https://www.ncbi.nlm.nih.gov/pubmed/23239042.
     
  133. Cao, J., E.S. Ng, D. McNaughton, E.G. Stanley, et al.,
    Fourier transform infrared microspectroscopy reveals that tissue culture conditions affect the macromolecular phenotype of human embryonic stem cells.
    Analyst, 2013. 138(14): p. 4147-60.
    https://www.ncbi.nlm.nih.gov/pubmed/23745179.
     
  134. Cao, J., E.S. Ng, D. McNaughton, E.G. Stanley, et al.,
    Fourier transform infrared microspectroscopy reveals unique phenotypes for human embryonic and induced pluripotent stem cell lines and their progeny.
    J Biophotonics, 2013: p. 167-182.
    http://www.ncbi.nlm.nih.gov/pubmed/23616434.
     
  135. Bergner, N., A. Medyukhina, K.D. Geiger, M. Kirsch, et al.,
    Hyperspectral unmixing of Raman micro-images for assessment of morphological and chemical parameters in non-dried brain tumor specimens.
    Anal Bioanal Chem, 2013. 405(27): p. 8719-28.
    https://www.ncbi.nlm.nih.gov/pubmed/23934397.
     
  136. Alexandrov, T. and P. Lasch,
    Segmentation of confocal Raman microspectroscopic imaging data using edge-preserving denoising and clustering.
    Anal Chem, 2013. 85(12): p. 5676-83.
    https://www.ncbi.nlm.nih.gov/pubmed/23701523.
     
  137. Yu, P.,
    Board-invited review: Sensitivity and responses of functional groups to feed processing methods on a molecular basis.
    J Anim Sci Biotechnol, 2012. 3(1): p. 40.
    https://www.ncbi.nlm.nih.gov/pubmed/23216994.
     
  138. Wrobel, T.P., K. Majzner, and M. Baranska,
    Protein profile in vascular wall of atherosclerotic mice analyzed ex vivo using FT-IR spectroscopy.
    Spectrochim Acta A Mol Biomol Spectrosc, 2012. 96: p. 940-5.
    https://www.ncbi.nlm.nih.gov/pubmed/22944148.
     
  139. Tosi, G., E. Giorgini, C. Rubini, S. Sabbatini, et al.,
    Vibrational spectroscopy as a supporting technique in clinical diagnosis and prognosis of atherosclerotic carotid plaques: a review.
    Anal Quant Cytopathol Histpathol, 2012. 34(4): p. 214-32.
    https://www.ncbi.nlm.nih.gov/pubmed/23016468.
     
  140. Pallua, J.D., W. Recheis, R. Poder, K. Pfaller, et al.,
    Morphological and tissue characterization of the medicinal fungus Hericium coralloides by a structural and molecular imaging platform.
    Analyst, 2012. 137(7): p. 1584-95.
    https://www.ncbi.nlm.nih.gov/pubmed/22158509.
     
  141. Pallua, J.D., C. Pezzei, B. Zelger, G. Schaefer, et al.,
    Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma.
    Analyst, 2012. 137(17): p. 3965-74.
    https://www.ncbi.nlm.nih.gov/pubmed/22792538.
     
  142. Lasch, P.,
    Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging.
    Chemometr Intell Lab, 2012. 117: p. 100-114.
    https://dx.doi.org/10.1016/j.chemolab.2012.03.011.
     
  143. Kremer, B., K. Owocki, A. Królikowska, B. Wrzosek, et al.,
    Mineral microbial structures in a bone of the Late Cretaceous dinosaur Saurolophus angustirostris from the Gobi Desert, Mongolia — a Raman spectroscopy study.
    Palaeogeography, Palaeoclimatology, Palaeoecology, 2012. 358-360: p. 51-61.
    https://doi.org/10.1016/j.palaeo.2012.07.020.
     
  144. Huck-Pezzei, V.A., J.D. Pallua, C. Pezzei, L.K. Bittner, et al.,
    Fourier transform infrared imaging analysis in discrimination studies of St. John's wort (Hypericum perforatum).
    Anal Bioanal Chem, 2012. 404(6-7): p. 1771-8.
    https://www.ncbi.nlm.nih.gov/pubmed/23053167.
     
  145. Hackett, M.J., J. Lee, F. El-Assaad, J.A. McQuillan, et al.,
    FTIR imaging of brain tissue reveals crystalline creatine deposits are an ex vivo marker of localized ischemia during murine cerebral malaria: general implications for disease neurochemistry.
    ACS Chem Neurosci, 2012. 3(12): p. 1017-24.
    https://www.ncbi.nlm.nih.gov/pubmed/23259037.
     
  146. Bozkurt, O., S. Haman Bayari, M. Severcan, C. Krafft, et al.,
    Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: fourier transform infrared microspectroscopy and neural network study.
    J Biomed Opt, 2012. 17(7): p. 076023.
    https://www.ncbi.nlm.nih.gov/pubmed/22894506.
     
  147. Bambery, K.R., B.R. Wood, and D. McNaughton,
    Resonant Mie scattering (RMieS) correction applied to FTIR images of biological tissue samples.
    Analyst, 2012. 137(1): p. 126-32.
    https://www.ncbi.nlm.nih.gov/pubmed/22076587.
     
  148. Wagner, C., W. Buchegger, M. Vellekoop, M. Kraft, et al.,
    Time-resolved mid-IR spectroscopy of (bio)chemical reactions in solution utilizing a new generation of continuous-flow micro-mixers.
    Anal Bioanal Chem, 2011. 400(8): p. 2487-97.
    https://www.ncbi.nlm.nih.gov/pubmed/21369756.
     
  149. Vernoud, L., H.A. Bechtel, M.C. Martin, J.A. Reffner, et al.,
    Characterization of multilayered glitter particles using synchrotron FT-IR microscopy.
    Forensic Sci Int, 2011. 210(1-3): p. 47-51.
    https://www.ncbi.nlm.nih.gov/pubmed/21354727.
     
  150. Tan, K.M., C.S. Herrington, and C.T. Brown,
    Discrimination of normal from pre-malignant cervical tissue by Raman mapping of de-paraffinized histological tissue sections.
    J Biophotonics, 2011. 4(1-2): p. 40-8.
    https://www.ncbi.nlm.nih.gov/pubmed/20082345.
     
  151. Tahtouh, M., S.A. Scott, J.R. Kalman, and B.J. Reedy,
    Four novel alkyl 2-cyanoacylate monomers and their use in latent fingermark detection by mid-infrared spectral imaging.
    Forensic Sci Int, 2011. 207(1-3): p. 223-38.
    https://www.ncbi.nlm.nih.gov/pubmed/21074340.
     
  152. St John, A., S. Best, Y. Wang, M. Tobin, et al.,
    Micron-scale 2-D Mapping of the Composition and Homogeneity of Polymer Inclusion Membranes.
    CSIRO Publishing, 2011.
    http://dx.doi.org/10.1071/CH10458.
     
  153. Meyer, T., N. Bergner, C. Bielecki, C. Krafft, et al.,
    Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis.
    J Biomed Opt, 2011. 16(2): p. 021113.
    https://www.ncbi.nlm.nih.gov/pubmed/21361676.
     
  154. Lasch, P. and W. Petrich,
    Data Acquisition and Analysis in Biomedical Vibrational Spectroscopy.
    Book: Biomedical Applications of Synchrotron Infrared Microspectroscopy (editor: David Moss), 2011. Chapter 6.
    https://dx.doi.org/10.1039/9781849731997-00192 .
     
  155. Krafft, C., M.A. Diderhoshan, P. Recknagel, M. Miljkovic, et al.,
    Crisp and soft multivariate methods visualize individual cell nuclei in Raman images of liver tissue sections.
    Vibrational Spectroscopy, 2011. 55(1): p. 90-100.
    https://dx.doi.org/10.1016/j.vibspec.2010.09.003.
     
  156. Hobro, A.J. and B. Lendl,
    Fourier-transform mid-infrared FPA imaging of a complex multicellular nematode.
    Vib Spec, 2011. 57(2): p. 213-219.
    https://dx.doi.org/10.1016/j.vibspec.2011.07.007.
     
  157. Hedegaard, M., M. C., S. Hassing, C. Krafft, et al.,
    Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging.
    Theoretical Chemistry Accounts, 2011. 130(4-6): p. 1249-1260.
    https://dx.doi.org/10.1007/s00214-011-0957-1.
     
  158. Hajimohammadi, A., J.L. Provis, and J.S.J. van Deventer,
    The effect of silica availability on the mechanism of geopolymerisation.
    Cement and Concrete Research, 2011. 41(3): p. 210-216.
    https://dx.doi.org/10.1016/j.cemconres.2011.02.001.
     
  159. Hajimohammadi, A., J.L. Provis, and J.S. van Deventer,
    Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation.
    J Colloid Interface Sci, 2011. 357(2): p. 384-92.
    https://www.ncbi.nlm.nih.gov/pubmed/21397245.
     
  160. Croxford, A., M. Rowley, D. McNaughton, K.S. Nandakumar, et al.,
    Chemical changes demonstrated in cartilage by synchrotron infrared microspectroscopy in an antibody-induced murine model of rheumatoid arthritis.
    Journal of Biomedical Optics, 2011. 16(6): p. 066004.
    https://doi.org/10.1117/1.3585680.
     
  161. Chonanant, C., N. Jearanaikoon, C. Leelayuwat, T. Limpaiboon, et al.,
    Characterisation of chondrogenic differentiation of human mesenchymal stem cells using synchrotron FTIR microspectroscopy.
    Analyst, 2011. 136(12): p. 2542-51.
    https://www.ncbi.nlm.nih.gov/pubmed/21526247.
     
  162. Arora, R., G.I. Petrov, and V.V. Yakovlev,
    Hyperspectral coherent anti-Stokes Raman scattering microscopy imaging through turbid medium.
    J Biomed Opt, 2011. 16(2): p. 021116.
    https://www.ncbi.nlm.nih.gov/pubmed/21361679.
     
  163. Arora, R., G.I. Petrov, and V. Yakovlev,
    Coherent anti-Stokes Raman scattering imaging through turbid medium.
    SPIE BiOS, 2011. 7903.
    https://dx.doi.org/10.1117/12.875433.
     
  164. Zhao, R., L. Quaroni, and A.G. Casson,
    Fourier transform infrared (FTIR) spectromicroscopic characterization of stem-like cell populations in human esophageal normal and adenocarcinoma cell lines.
    Analyst, 2010. 135(1): p. 53-61.
    https://www.ncbi.nlm.nih.gov/pubmed/20024181.
     
  165. Tosi, G., C. Conti, E. Giorgini, P. Ferraris, et al.,
    FTIR microspectroscopy of melanocytic skin lesions: a preliminary study.
    Analyst, 2010. 135(12): p. 3213-9.
    https://www.ncbi.nlm.nih.gov/pubmed/20953511.
     
  166. Tanthanuch, W., K. Thumanu, C. Lorthongpanich, R. Parnpai, et al.,
    Neural differentiation of mouse embryonic stem cells studied by FTIR spectroscopy.
    Journal of Molecular Structure, 2010. 967(1): p. 189-195.
    https://dx.doi.org/10.1016/j.molstruc.2010.01.007.
     
  167. Pezzei, C., J.D. Pallua, G. Schaefer, C. Seifarth, et al.,
    Characterization of normal and malignant prostate tissue by Fourier transform infrared microspectroscopy.
    Mol Biosyst, 2010. 6(11): p. 2287-95.
    https://www.ncbi.nlm.nih.gov/pubmed/20871936.
     
  168. Miljkovic, M., T. Chernenko, M.J. Romeo, B. Bird, et al.,
    Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets.
    Analyst, 2010. 135(8): p. 2002-13.
    https://www.ncbi.nlm.nih.gov/pubmed/20526496.
     
  169. Matschulat, A., D. Drescher, and J. Kneipp,
    Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems.
    ACS Nano, 2010. 4(6): p. 3259-69.
    https://www.ncbi.nlm.nih.gov/pubmed/20503969.
     
  170. Mariani, M.M., L.J. Maccoux, C. Matthaus, M. Diem, et al.,
    Micro-Raman detection of nuclear membrane lipid fluctuations in senescent epithelial breast cancer cells.
    Anal Chem, 2010. 82(10): p. 4259-63.
    https://www.ncbi.nlm.nih.gov/pubmed/20380478.
     
  171. Leskovjan, A.C., A. Kretlow, and L.M. Miller,
    Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer's disease.
    Anal Chem, 2010. 82(7): p. 2711-6.
    https://www.ncbi.nlm.nih.gov/pubmed/20187625.
     
  172. Krafft, C., N. Bergner, C. Matthäus, B.F. Romeike, et al.,
    FTIR, Raman, and CARS microscopic imaging for histopathologic assessment of brain tumors.
    SPIE BiOS, 2010. 7560.
    https://dx.doi.org/10.1117/12.851080.
     
  173. Heraud, P., E.S. Ng, S. Caine, Q.C. Yu, et al.,
    Fourier transform infrared microspectroscopy identifies early lineage commitment in differentiating human embryonic stem cells.
    Stem Cell Res, 2010. 4(2): p. 140-7.
    https://www.ncbi.nlm.nih.gov/pubmed/20060373.
     
  174. Heraud, P., S. Caine, N. Campanale, T. Karnezis, et al.,
    Early detection of the chemical changes occurring during the induction and prevention of autoimmune-mediated demyelination detected by FT-IR imaging.
    Neuroimage, 2010. 49(2): p. 1180-9.
    https://www.ncbi.nlm.nih.gov/pubmed/19796690.
     
  175. Hajimohammadi, A., J.L. Provis, and J.S.J. van Deventer,
    Effect of Alumina Release Rate on the Mechanism of Geopolymer Gel Formation.
    Chemistry of Materials, 2010. 22(18): p. 5199-5208.
    https://doi.org/10.1021/cm101151n.
     
  176. Giorgini, E., C. Conti, P. Ferraris, S. Sabbatini, et al.,
    Effects of Lactobacillus rhamnosus on zebrafish oocyte maturation: an FTIR imaging and biochemical analysis.
    Anal Bioanal Chem, 2010. 398(7-8): p. 3063-72.
    https://www.ncbi.nlm.nih.gov/pubmed/20936269.
     
  177. Falamas, A., S. Cinta-Pinzaru, C. Dehelean, C. Krafft, et al.,
    Raman and FT-IR imaging of in vivo damaged tissue induced by 7, 12-dimethylbenzanthracene (DMBA) in mouse models.
    Romanian Journal of Biophysics, 2010. 20(1): p. 1-11.
    https://www.rjb.ro/raman-and-ft-ir-imaging-of-in-vivo-damaged-tissue-induced-by-7-12-dymethilbenzanthracene-dmba-in-mouse-models/.
     
  178. Carter, E.A., B.S. Rayner, A.I. McLeod, L.E. Wu, et al.,
    Silicon nitride as a versatile growth substrate for microspectroscopic imaging and mapping of individual cells.
    Mol Biosyst, 2010. 6(7): p. 1316-22.
    https://www.ncbi.nlm.nih.gov/pubmed/20445927.
     
  179. Asghari-Khiavi, M., B.R. Wood, A. Mechler, K.R. Bambery, et al.,
    Correlation of atomic force microscopy and Raman micro-spectroscopy to study the effects of ex vivo treatment procedures on human red blood cells.
    Analyst, 2010. 135(3): p. 525-30.
    https://www.ncbi.nlm.nih.gov/pubmed/20174705.
     
  180. Wood, B.R., A. Hermelink, P. Lasch, K.R. Bambery, et al.,
    Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics.
    Analyst, 2009. 134(6): p. 1119-25.
    https://www.ncbi.nlm.nih.gov/pubmed/19475137.
     
  181. Untereiner, V., O. Piot, M.D. Diebold, O. Bouche, et al.,
    Optical diagnosis of peritoneal metastases by infrared microscopic imaging.
    Anal Bioanal Chem, 2009. 393(6-7): p. 1619-27.
    https://www.ncbi.nlm.nih.gov/pubmed/19219424.
     
  182. Thumanu, K., W. Tanthanuch, C. Lorthongpanich, P. Heraud, et al.,
    FTIR microspectroscopic imaging as a new tool to distinguish chemical composition of mouse blastocyst.
    Journal of Molecular Structure, 2009. 933(1): p. 104-111.
    https://dx.doi.org/10.1016/j.molstruc.2009.06.003.
     
  183. Rutlidge, H.T. and B.J. Reedy,
    Classification of heterogeneous solids using infrared hyperspectral imaging.
    Appl Spectrosc, 2009. 63(2): p. 172-9.
    https://www.ncbi.nlm.nih.gov/pubmed/19215646.
     
  184. Quaroni, L. and A.G. Casson,
    Characterization of Barrett esophagus and esophageal adenocarcinoma by Fourier-transform infrared microscopy.
    Analyst, 2009. 134(6): p. 1240-6.
    https://www.ncbi.nlm.nih.gov/pubmed/19475154.
     
  185. Pääkkönen, J., N. Päivinen, and P. Toivanen,
    Challenges in Computational Histopathology: The Feasibility of FTIR Spectroscopy in Clustering.
    2009 Fifth International Conference on Signal Image Technology and Internet Based Systems, 2009: p. 59-64.
    https://dx.doi.org/10.1109/SITIS.2009.20.
     
  186. Miljković, M., L. Quintero, Matthäus, C., T. Chernenko, et al.,
    A Comparison of Imaging Algorithms for the Analysis of Raman Hyperspectral Datasets from Human Cells.
    Poster, 2009.
    no link available.
     
  187. McNaughton, D., B.R. Wood, T.C. Cox, J.D. Drenckhahn, et al.,
    3-D Imaging of Biomedical Samples.
    Infrared and Raman Spectroscopic Imaging, 2009: p. 203-221.
    https://dx.doi.org/10.1002/9783527628230.ch6.
     
  188. Lasch, P., A. Hermelink, and D. Naumann,
    Correction of axial chromatic aberrations in confocal Raman microspectroscopic measurements of a single microbial spore.
    Analyst, 2009. 134(6): p. 1162-70.
    https://www.ncbi.nlm.nih.gov/pubmed/19475143.
     
  189. Krafft, C., A.A. Ramoji, C. Bielecki, N. Vogler, et al.,
    A comparative Raman and CARS imaging study of colon tissue.
    J Biophotonics, 2009. 2(5): p. 303-12.
    https://www.ncbi.nlm.nih.gov/pubmed/19434617.
     
  190. Umeri, A., T.A. Kuku, N. Scuor, and V. Sergo,
    Raman investigation of the ageing of Ni-BaTiO3 multilayer ceramic capacitors.
    Journal of Materials Science, 2008. 43(3): p. 922-926.
    https://dx.doi.org/10.1007/s10853-007-2215-4.
     
  191. Toyran, N., F. Severcan, M. Severcan, and B. Turan,
    Effects of selenium supplementation on rat heart apex and right ventricle myocardia by using FTIR spectroscopy: A cluster analysis and neural network approach.
    Food Chemistry, 2008. 110(3): p. 590-597.
    https://dx.doi.org/10.1016/j.foodchem.2008.02.044.
     
  192. Schulte, F., J. Lingott, U. Panne, and J. Kneipp,
    Chemical characterization and classification of pollen.
    Anal Chem, 2008. 80(24): p. 9551-6.
    https://www.ncbi.nlm.nih.gov/pubmed/18975984.
     
  193. Ooi, G.J., J. Fox, K. Siu, R. Lewis, et al.,
    Fourier transform infrared imaging and small angle x-ray scattering as a combined biomolecular approach to diagnosis of breast cancer.
    Med Phys, 2008. 35(5): p. 2151-61.
    https://www.ncbi.nlm.nih.gov/pubmed/18561690.
     
  194. Krafft, C., D. Codrich, G. Pelizzo, and V. Sergo,
    Raman and FTIR imaging of lung tissue: Methodology for control samples.
    Vibrational Spectroscopy, 2008. 46(2): p. 141-149.
    https://dx.doi.org/10.1016/j.vibspec.2007.12.007.
     
  195. Chiovitti, A., P. Heraud, T.M. Dugdale, O.M. Hodson, et al.,
    Divalent cations stabilize the aggregation of sulfated in the adhesive nanofibers of the biofouling diatom Toxarium undulatum.
    Soft Matter, 2008. 4(4): p. 811-820.
    https://www.ncbi.nlm.nih.gov/pubmed/32907187.
     
  196. Bonifacio, A., S. Finaurini, C. Krafft, S. Parapini, et al.,
    Spatial distribution of heme species in erythrocytes infected with Plasmodium falciparum by use of resonance Raman imaging and multivariate analysis.
    Anal Bioanal Chem, 2008. 392(7-8): p. 1277-82.
    https://www.ncbi.nlm.nih.gov/pubmed/18836854.
     
  197. Bird, B., M. Miljkovic, M.J. Romeo, J. Smith, et al.,
    Infrared micro-spectral imaging: distinction of tissue types in axillary lymph node histology.
    BMC Clin Pathol, 2008. 8: p. 8.
    https://www.ncbi.nlm.nih.gov/pubmed/18759967.
     
  198. Ali, K., Y. Lu, C. Christensen, T. May, et al.,
    Fourier transform infrared spectromicroscopy and hierarchical cluster analysis of human meningiomas.
    Int J Mol Med, 2008. 21(3): p. 297-301.
    https://www.ncbi.nlm.nih.gov/pubmed/18288376.
     
  199. Toyran, N., B. Turan, and F. Severcan,
    Selenium alters the lipid content and protein profile of rat heart: an FTIR microspectroscopic study.
    Arch Biochem Biophys, 2007. 458(2): p. 184-93.
    https://www.ncbi.nlm.nih.gov/pubmed/17240348.
     
  200. Toyran, N., F. Severcan, M. Severcan, and B. Turan,
    Investigation of diabetes-induced effect on apex of rat heart myocardium by using cluster analysis and neural network approach: An FTIR study.
    Journal of Spectroscopy, 2007. 21: p. 269618.
    https://dx.doi.org/10.1155/2007/269618.
     
  201. Peiqiang, Y.,
    Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review.
    American Journal of Biochemistry and Biotechnology, 2007. 3(2).
    https://dx.doi.org/10.3844/ajbbsp.2007.66.86.
     
  202. McNaughton, D. and B.R. Wood,
    Applications of fourier-transform infrared imaging in cancer research.
    ACS Symposium Series. American Chemical Society, 2007. 963: p. 14-29.
    https://dx.doi.org/10.1021/bk-2007-0963.ch002.
     
  203. Lasch, P., M. Diem, W. Hansch, and D. Naumann,
    Artificial neural networks as supervised techniques for FT-IR microspectroscopic imaging.
    J Chemom, 2007. 20(5): p. 209-220.
    https://www.ncbi.nlm.nih.gov/pubmed/19960119.
     
  204. Lasch, P.,
    Diagnostic Potentials of FT-IR Microspectrometry in the Examination of Colorectal Adenocarcinomas.
    Presented at the 1st International Workshop On Spectral Diagnostics (SD-1), Boston, June 21st - 23rd, 2007., 2007. 1(1).
    no link available.
     
  205. Heraud, P., S. Caine, G. Sanson, R. Gleadow, et al.,
    Focal plane array infrared imaging: a new way to analyse leaf tissue.
    New Phytol, 2007. 173(1): p. 216-25.
    https://www.ncbi.nlm.nih.gov/pubmed/17176407.
     
  206. Dumas, P., G.D. Sockalingum, and J. Sule-Suso,
    Adding synchrotron radiation to infrared microspectroscopy: what's new in biomedical applications?
    Trends Biotechnol, 2007. 25(1): p. 40-4.
    https://www.ncbi.nlm.nih.gov/pubmed/17116340.
     
  207. Bayari, S.H., H. Utku, Y. Ikemoto, B. Celasun, et al.,
    Synchrotron FT-IR microspectroscopic analysis of necrotic bone.
    Spectroscopy, 2007. 21: p. 732013.
    https://dx.doi.org/10.1155/2007/732013.
     
  208. Wood, B.R., K.R. Bambery, C.J. Evans, M.A. Quinn, et al.,
    A three-dimensional multivariate image processing technique for the analysis of FTIR spectroscopic images of multiple tissue sections.
    BMC Med Imaging, 2006. 6(12): p. 12.
    https://www.ncbi.nlm.nih.gov/pubmed/17014733.
     
  209. Romeo, M., B. Mohlenhoff, M. Jennings, and M. Diem,
    Infrared micro-spectroscopic studies of epithelial cells.
    Biochim Biophys Acta, 2006. 1758(7): p. 915-22.
    https://www.ncbi.nlm.nih.gov/pubmed/16797481.
     
  210. Romeo, M., B. Mohlenhoff, and M. Diem,
    Infrared micro-spectroscopy of human cells: Causes for the spectral variance of oral mucosa (buccal) cells.
    Vib Spectrosc, 2006. 42(1): p. 9-14.
    https://www.ncbi.nlm.nih.gov/pubmed/19750140.
     
  211. Matthaus, C., S. Boydston-White, M. Miljkovic, M. Romeo, et al.,
    Raman and infrared microspectral imaging of mitotic cells.
    Appl Spectrosc, 2006. 60(1): p. 1-8.
    https://www.ncbi.nlm.nih.gov/pubmed/16454901.
     
  212. Liu, K.Z., A. Man, R.A. Shaw, B. Liang, et al.,
    Molecular determination of liver fibrosis by synchrotron infrared microspectroscopy.
    Biochim Biophys Acta, 2006. 1758(7): p. 960-7.
    https://www.ncbi.nlm.nih.gov/pubmed/16806057.
     
  213. Lasch, P. and D. Naumann,
    Spatial resolution in infrared microspectroscopic imaging of tissues.
    Biochim Biophys Acta, 2006. 1758(7): p. 814-29.
    https://www.ncbi.nlm.nih.gov/pubmed/16875659.
     
  214. Fabian, H., N.A. Thi, M. Eiden, P. Lasch, et al.,
    Diagnosing benign and malignant lesions in breast tissue sections by using IR-microspectroscopy.
    Biochim Biophys Acta, 2006. 1758(7): p. 874-82.
    https://www.ncbi.nlm.nih.gov/pubmed/16814743.
     
  215. Bambery, K.R., E. Schultke, B.R. Wood, S.T. Rigley MacDonald, et al.,
    A Fourier transform infrared microspectroscopic imaging investigation into an animal model exhibiting glioblastoma multiforme.
    Biochim Biophys Acta, 2006. 1758(7): p. 900-7.
    https://www.ncbi.nlm.nih.gov/pubmed/16815240.
     
  216. Wang, Q., A. Kretlow, M. Beekes, D. Naumann, et al.,
    In situ characterization of prion protein structure and metal accumulation in scrapie-infected cells by synchrotron infrared and X-ray imaging.
    Vibrational Spectroscopy, 2005. 38(1): p. 61-69.
    https://dx.doi.org/10.1016/j.vibspec.2005.02.023.
     
  217. Tahtouh, M., J.R. Kalman, C. Roux, C. Lennard, et al.,
    The detection and enhancement of latent fingermarks using infrared chemical imaging.
    J Forensic Sci, 2005. 50(1): p. 64-72.
    https://www.ncbi.nlm.nih.gov/pubmed/15830998.
     
  218. Romeo, M.J. and M. Diem,
    Infrared spectral imaging of lymph nodes: Strategies for analysis and artifact reduction.
    Vib Spectrosc, 2005. 38(1-2): p. 115-119.
    https://www.ncbi.nlm.nih.gov/pubmed/19718274.
     
  219. Hynes, A., D.A. Scott, A. Man, D.L. Singer, et al.,
    Molecular mapping of periodontal tissues using infrared microspectroscopy.
    BMC Med Imaging, 2005. 5(1): p. 2.
    https://www.ncbi.nlm.nih.gov/pubmed/15890072.
     
  220. Gough, K.M., M. Rak, A. Bookatz, B. Del, M., et al.,
    Choices for tissue visualization with IR microspectroscopy.
    Vib Spec, 2005. 38(1-2): p. 133-141.
    https://dx.doi.org/10.1016/j.vibspec.2005.02.027.
     
  221. Flynn, K., R. O'Leary, C. Lennard, C. Roux, et al.,
    Forensic applications of infrared chemical imaging: multi-layered paint chips.
    J Forensic Sci, 2005. 50(4): p. 832-41.
    https://www.ncbi.nlm.nih.gov/pubmed/16078484.
     
  222. Crombie, D.E., M. Turer, B.B. Zuasti, B. Wood, et al.,
    Destructive effects of murine arthritogenic antibodies to type II collagen on cartilage explants in vitro.
    Arthritis Res Ther, 2005. 7(5): p. R927-37.
    https://www.ncbi.nlm.nih.gov/pubmed/16207334.
     
  223. Wood, B.R., L. Chiriboga, H. Yee, M.A. Quinn, et al.,
    Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium.
    Gynecol Oncol, 2004. 93(1): p. 59-68.
    https://www.ncbi.nlm.nih.gov/pubmed/15047215.
     
  224. Lasch, P., N.A. Ngo Thi, H. Fabian, and D. Naumann,
    Infrarot-Imaging für die pathohistologische Diagnostik.
    Laborwelt, 2004. 4(2): p. 8-12.
    no link available.
     
  225. Lasch, P., W. Haensch, D. Naumann, and M. Diem,
    Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis.
    Biochim Biophys Acta, 2004. 1688(2): p. 176-86.
    https://www.ncbi.nlm.nih.gov/pubmed/14990348.
     
  226. Lasch, P., M. Diem, and D. Naumann,
    FT-IR microspectroscopic imaging of prostate tissue sections.
    Proc SPIE, 2004. 5321(Biomedical Vibrational Spectroscopy and Biohazard Detection Technologies).
    https://dx.doi.org/10.1117/12.529125.
     
  227. Kneipp, J., L.M. Miller, S. Spassov, F. Sokolowski, et al.,
    Prion structure investigated in situ, ex vivo, and in vitro by FTIR spectroscopy.
    Biomedical Optics 2004, 2004. 5321: p. 9.
    https://dx.doi.org/10.1117/12.529918.
     
  228. Diem, M., M. Romeo, S. Boydston-White, M. Miljcovic, et al.,
    Infrared spectral imaging of human cells and tissue: an approach to objective, machine-based histopathology.
    Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004., 2004: p. 75-76.
    https://dx.doi.org/10.1109/ICIMW.2004.1421960.
     
  229. Bambery, K.R., B.R. Wood, M.A. Quinn, and D. McNaughton,
    Fourier Transform Infrared Imaging and Unsupervised Hierarchical Clustering Applied to Cervical Biopsies.
    Australian Journal of Chemistry, 2004. 57(12): p. 1139-1143.
    https://dx.doi.org/10.1071/CH04137.
     
  230. Kneipp, J., L.M. Miller, M. Joncic, M. Kittel, et al.,
    In situ identification of protein structural changes in prion-infected tissue.
    Biochim Biophys Acta, 2003. 1639(3): p. 152-8.
    https://www.ncbi.nlm.nih.gov/pubmed/14636946.
     
  231. Fabian, F., P. Lasch, M. Boese, and W. Haensch,
    Infrared microspectroscopic imaging of benign breast tumor tissue sections.
    J Mol Struct, 2003. 661–662: p. 411–417.
    https://dx.doi.org/10.1016/j.molstruc.2003.07.002.
     
  232. Dumas, P. and M.J. Tobin,
    A bright source for infrared microspectroscopy: synchrotron radiation.
    Spectroscopy Europe, 2003.
    no link available.
     
  233. Lasch, P., A. Pacifico, and M. Diem,
    Spatially resolved IR microspectroscopy of single cells.
    Biopolymers, 2002. 67(4-5): p. 335-8.
    https://www.ncbi.nlm.nih.gov/pubmed/12012461.
     
  234. Lasch, P., W. Haensch, E.N. Lewis, L.H. Kidder, et al.,
    Characterization of Colorectal Adenocarcinoma Sections by Spatially Resolved FT-IR Microspectroscopy.
    Appl Spectrosc, 2002. 56(1): p. 1-9.
    https://dx.doi.org/10.1366/0003702021954322.
     
  235. Lasch, P., L. Chiriboga, H. Yee, and M. Diem,
    Infrared spectroscopy of human cells and tissue: detection of disease.
    Technol Cancer Res Treat, 2002. 1(1): p. 1-7.
    https://www.ncbi.nlm.nih.gov/pubmed/12614171.
     
  236. Kneipp, J., P. Lasch, M. Beekes, and D. Naumann,
    In situ spectroscopic investigation of transmissible spongiform encephalopathies: Application of Fourier-transform infrared spectroscopy to a scrapie-hamster model.
    Proc SPIE, 2002. 4614: p. 12-19.
    https://dx.doi.org/10.1117/12.460795.
     
  237. Kneipp, J., M. Beekes, P. Lasch, and D. Naumann,
    Molecular changes of preclinical scrapie can be detected by infrared spectroscopy.
    J Neurosci, 2002. 22(8): p. 2989-97.
    https://www.ncbi.nlm.nih.gov/pubmed/11943801.
     
  238. Fabian, H., P. Lasch, M. Boese, and W. Haensch,
    Mid-IR microspectroscopic imaging of breast tumor tissue sections.
    Biopolymers, 2002. 67(4-5): p. 354-7.
    https://www.ncbi.nlm.nih.gov/pubmed/12012465.
     

 

  Links:
 
[ GENERAL | FILE | SPECTRAL PREPROCESSING | SPATIAL PREPROCESSING | UNIVARIATE IMAGING | MULTIVARIATE IMAGING | TOOLS |
FILE INFO |
GLOSSARY | CONTACT: info@cytospec.com | PUBLISHER DETAILS | PRIVACY POLICY ]

Copyright (c) 2000-2022 CytoSpec. All rights reserved.